

Aeroseal – Your key to open up energy efficiency in ventilation and much more...

What is Aeroseal?

"Aeroseal is a unique technology to improve indoor environments and energy efficiency in buildings by sealing leaks in ventilation systems "

AEROSEAL history

- Aeroseal was invented 1994 by Prof. Marc Modera, Berkley Labs, USA
- Licensed by MEZ-TECHNIK from Aeroseal LLC USA for Europe since 2015
- Currently 55 independent Aeroseal licensees provide sealing services in Europe more than 650 worldwide
- In Europe more than 1.000 commercial Aeroseal projects carried out on new buildings & retrofits so far...

01.07.2024

Why is Aeroseal a game changer?

- Example Germany: nearly 3 million non-residential buildings have HVAC systems
- Ventilation systems plays a **key role** to optimize the energy efficiency of these buildings
- Approx. 30-50% of building energy costs are related to ventilation and air conditioning systems (e.g. fan energy, heating/cooling, humidifying/dehumidifying, etc.)
- 1,00 m³ of leaked air per hour causes costs of EUR 1,00 to 3,00 and more per year!
- To reach a maximum in savings Aeroseal must become the foundation of all retrofits in ventilation and a standard application in new construction

Let's face it - There is no tightness in ventilation!

- Normative requirements for the tightness of ventilation systems are generally not fulfilled and "could not" be proven representatively so far
 - Tightness according to: EN 1507/12237 minimum B, recommended C
 - Hygiene requirements: VDI 6022, EN 15780 at least C, often D
 - Commissioning/handover of ventilation systems: EN 12599, more realistic testings
 - Energy efficiency: EN 16783-3 new classification system ATC 1 to 7
 - Higher legal energy efficiency requirements according to EBPD / GEGs

- Leakages have always been a taboo because there was no efficient solution
- Pressure on the ventilation industry is rising:
 - Law requirements
 - New regulations
 - Rising energy price
 - Building owner & operator requirements

Why do ventilation systems leak at all?

1st step – Planning

- Common practice: 10-20% air volume surcharge
- Usually no tender for airtightness or airtightness testing
- No, inadequate or non-representative leakage testing

5th step – TAB & services

- Cleaning during handover
- Testing, adjusting and balancing (TAB)
- Defects are usually revealed here

2nd step – Manufacturing

4th step – Installation

3rd step - Transport & handling

Tightness - Big gap between wish and reality!

	Air tight	ness class	Limit value air leckage f ^{max}		Leckage ca. in %	
	new	old	(in m³/s)			ı
	ATC 7				ATC 7 = 15-40%	Ŀ
	ATC 6	2,5 x A	0,0675	• pt ^{0,65} • 10 ⁻³	ATC 6 = 15%	
	ATC 5	Α	0,027	• pt ^{0,65} • 10 ⁻³	ATC 5 = 6%	
	ATC 4	В	0,009	• pt ^{0,65} • 10 ⁻³	ATC 4 = 2%	
	ATC 3	С	0,003	• pt ^{0,65} • 10 ⁻³	ATC 2 = 0,22%	
9	ATC 2	D	0,001	• pt ^{0,65} • 10 ⁻³		
	ATC 1		0,00033	• pt ^{0,65} • 10 ⁻³		

Table 1:

Calculation basis for limit values of leak tightness classes ATC 6 to ATC 1 (m³/s je m² Luftleitungsoberfläche) according to **DIN EN 16798 Part 3**. is the respective test pressure

Source: DIN EN 16798 Part 3 (DIN 13779) Ventilation of non-residential buildings – performance requirements for ventilation, air conditioning and space cooling systems

10 more significant potentials to open up!

- 1. Noise reduction caused by leakages
- 2. Elimination of odours (e.g. kitchen exhaust air, laboratories, office complex...) distributed within building
- 3. Higher air exchange rates leads to significant indoor air quality / environment (IAQ / IEQ) improvements
- 4. Better air distribution leads to more comfort
- 5. Improvement of pressure conditions in between building sections (elimination of uncontrolled air ingress/egress into other parts of the building)
- 6. Increase of air hygiene by preventing decontamination of already filtered air, by ex- and infiltration
- 7. Smaller ventilation systems in new constructions, as volume flow surcharges are no longer necessary during planning
- 8. Reduction of **overall construction/refurbishment costs** (room volumes, statics, sound and heat insulation, fire protection, insulation...)
- 9. Fewer lawsuits and elimination of costs for lawyers, experts and consultants
- 10. Planning security through guaranteed air tightness

How does it work? Aeroseal process in 10 steps

- 1. Definition of the systems to be sealed (\emptyset 120 meters length)
- 2. Disconnecting or preparing the air handling unit (AHU)
- 3. Close all outlets/inlets at the ventilation system
- 4. Protect sensors and heat exchangers, smoke and fire detectors
- 5. Connect the Aeroseal equipment
- 6. Pre leakage test to determine the initial situation
- 7. Sealing process (5-60 min)
- 8. Do a final leakage test and create a corresponding certificate
- 9. Re-establish the system
- 10. Balancing of the system

SYSTEM DESCRIPTION: Software 4-3-3-23 Test

Duct Sealing Performed For:

AEROSEAL Test Bierwiesenstrasse Reutlingen, BW 72770

HARDWARE: EuroSeal
TECHNICIAN: Diesel

AEROSEAL CASE ID: 3316

SEAL DESCRIPTION: Test 2

DATE: 29/9/2021

Overall Sealing Results:

BEFORE SERVICE

36.6 L/s of Leakage, equivalent to 17.9 cm² Hole or 11% of the system capacity of 321.9 L/s

AFTER SERVICE

Less than 2.4 L/s of Leakage, equivalent to a 1.2 cm² Hole

Leakage test: PASS

94% Reduction in Duct Leakage

ATC:	ATC1	Leakage based o	n surface area
Allowable Air Leakage:	3.9 L/s	ATC1	3.89 L/s
		ATC2(D)	11.79 L/s
Achieved Air Leakage:	2.4 L/s	ATC3(C)	35.37 L/s
Surface Area (ft²):	240.0 m ²	ATC4(B)	106.12 L/s
		ATC5(A)	318.36 L/s
Operating Pressure:	400 Pa	ATC6(2.5xA)	795.89 L/s

NOTE: Duct leakage results are reported at the stated operating pressure of 400 Pa. The results are extrapolated per applicable portions of EN12237/ EN1507/ EN16798-3.

Aeroseal Sealing Progress:

Aeroseal process simulated

AEROSEAL

- Polyvinylacetate (PVAC/PVA) is an odourless, environmentally friendly sealant material
- Free of solvents / VOC
- Complies with all relevant standards
- Temperature resistant from -29°C to +249°C
- Flame retardant
- Durability of 30 years plus
- Warranty of 10 years after application
- Fulfills the highest green building requirements (for example DGNB & LEED)
- Tested and suitable for components such as fire dampers etc.
- FDA/NSF conformity (pharmaceutical, food and cleanroom technology)
- Can be used for smoke extraction ducts (sheet metal and silicate ducts e.g. PROMAT)

Scania Production – Meppel (Netherlands)

Location Meppel, Netherlands

Date December 2020

MEZ-AEROSEAL-Partner Air Innovators B.V., Netherlands

Client Scania Production Meppel B.V.

Building type Production line / Industry

Development air tightness class

Before sealing After sealing

267,6 L/s 8,0 L/s (97% improvement)

Problem

- Discharge of toxic gases / paint particles due to large leakage
- High energy consumption
- Performed leak test did not meet requirements
- Truck production was not allowed to be affected

Solution

- Tightness class D (ATC2) was achieved through Aeroseal
- No impairment of production
- Further projects at Scania in prospect

Project example: Cosmetic & pharamceutical company

Location Bielefeld, Germany

Date November 2020 until March 2021

MEZ-AEROSEAL partner BWB-CM GmbH, Germany

Customer Dr. Kurt Wolff

Building type Office building, production and warehouse

Improvement of the tightness by 95%

Pre-Sealing After Sealing

Class 2,5xA Class C, partly D

Background

- Approx. 15-30% leakage in existing system high energy costs
- Partially **failed leakage tests** (no pressure build-up possible due to excessive leakage)
- Energy efficiency calculation based on field data collection illustrates great savings potential

Implementation

- Execution of retrofits & sealing during ongoing operation
- Minimal interruptions to operation due to time-saving execution
- Refurbishment possible in existing buildings, no new installation necessary
- Achievement of air tightness class C and partly D, i.e. less than 0.22% leakage
- Retrofit in combination with fan replacements

Savings kW/h and EUR after sealing

Project information		
Building type	Production, office, warehouse	
Class start	2,5xA (ATC 6)	
Class results	C (ATC 3)/D (ATC4)	
Number of injections	> 50	

Parameters ventilation system		
Runtime	6.630h per year	
Class start	2,5xA (ATC6)	
Average operating pressure	400 Pa	

Calculated values				
Power consumption OLD	505.000 kW/h			
Power consumption NEW	221.000 kW/h			
= Power saving fan power	284.000 kW/h			
Total savings per year	~ 54.000,00 €			

Exemplary ROI consideration		
Ventilation system	Production 1st floor	
ROI	~ 1,5 years	

IMPORTANT: Without taking into account cooling and heating energy and other factors!

Source: Dr. Kurt Wolff, Detlef Malinowsky (IBDM)

Example Aeroseal sealing at multi family dwelling

AE

So why should Aeroseal become a standard application within your retrofit activities and new constructions?

- Operating costs of your ventilation systems can be reduced by at least 50%
- Improvement of air quality, hygiene and comfort in your buildings
- Cost-efficient retrofit during operation
 - Sealing process in 10 min to 60 min
 - Low personnel deployment with only 2 technicians
 - Commissioning after only 2 hours
 - Applicable to different materials: sheet metal, silicate/PROMAT, concrete, plastic, etc.
 - Sealing of 3-5 air duct systems per day
 - Sealing of 1-2 air handling units per day
- Air tightness of the entire ventilation system is 100% proven and certified
- Resource-efficient use of materials compared to conventional sealing tapes, silicones and other sealants

What could be the next steps?

- 1. Selection of a suitable object and corresponding ventilation systems for a first use case
- 2. Forwarding of plan drawings (if available) and system information
- 3. First cost estimation by MEZ-TECHNIK
- 4. On-site appointment & detailed project planning
- 5. Estimation/calculation of energy saving potential
- 6. Project plan & final offer
- 7. Execution of first test project

Satisfied customers and partners...

Example case studies: https://www.mez-technik.de/en/mez-aeroseal/case-studies-references.html

Thank you for your attention!